
ISI/SR-78-13
May 1978

ARPA ORDER NO. 2223

PROTECTION ANALYSIS:

Final Report

Richard Bisbey

~ ~ Dennis HoIlingwortb

IThis documeant 1hci ben appfoved
for pubbC -Oc'SO clad salo; its

disribution is unlimited.

INFORAr4TION SCIENCES INSTITUTE

4676 Adwn alt' Ww•'V/Ata'i'ta del •e)y/Cali/ornha 1;0291

., Liji.. T 01" SOI"'IERNF CALI:ORN! / (213) 822.1 511S. ' _ im

UNCLASSIFIED

SECýBJTY CLASSW1CATION OF THIS PAGE (fton D.I& Entered)

PAGE READ INSTRUCTIONSREPORT DOCUMENTATION PAEBEFORE COMPLETING FORM
V -EPORT NUMBER 2.GOVT ACCES3SION No. 3. RECIPIENT'S CATALOG NUMB3ER

L~ISI/SR-78-13 IM

.r T-P rnPR EId61VERED

Protection Analysis: F-Thai RepOer-t4rRsac ____ _______F ____P

G.PERFORMING ORO. REPORT HUMDER

7-AI.4O? COTRACT OR GRANT NUMBERW.

De nn i s/Hl I Ii nio r th DH1-2C

9. PERFORMING ORGANIZATION NAME AND ADDRESS IV NPO
AREA 1A WORK UNIT NUMBE RS

USC/Information Sciences Institute4
4676 Admiralty Way ARPA Order i/2223

Marina del Rey, CA 90291
II. CONTROLL.ING OFFICE NAME AND ADDRESS l EOTDT

Defense Advanced Research Projects Agency May 7 -

1400O Wilson Blvd. FT.NMERFPA
Arlington, VA 22209 ____

14. MONITORING AGENCY NAME &ADDRESS(II differe.nt from 15holndOe)I. SECURITY '4 ofI KIL'topodt)

15m. DECLASSIFICATION/DOWNGRAOIHG

16. DISTRIBUTION STATEMENT (of this* Report) SHDL -

Thi s document i s approved for publ ic release and sale; di str ibutiorn is
unlIi m ited.

.7. DISTRIBUTION 3TATEMENT (of !h. abetrack .ntorod in Block 20, If differetn fom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side It n~coeaftsy end Identify by block numb..)

x

aý,C(1.s5 control, computer security, error analysis, error-driven evaluation,

error types, operating system security, protection evaluation, protection

a0. ABSTRACT (Continue on reverse *1d I.' .,ic..eedy Amd identify by bloCk nugnb..)

(UVER)

jDn 1473M EDITION OF I NH)V 615 IS OBSOLETE UGLS FIE

S/N ,,102-014-6601~
SECURITY CLASSIFICAYION Oir THIS PACE (ften Datit EinI..d)

UNC LASS I F IE)
SECURITY CLASSIFICATION OF THIS PAGE(aen D&IM 8"16"d)

2 20Q ABSTRACT -

The Protection Analysis projoct was initiated at ISI by
ARPA IPTO to further understand operating system security
vulnerabilities and, where possible, identify automatable
techniques for detecting such vulnerabilities in existing
system software. The primary goal of the project was to
make protection evaluation both more effective and more
economical by decomposing it into more manageable and
methodical subtasks so as to drastically reduce the
requirement for protection expertise and make it as
independent as possible of the skills and motivation of the I
actual individuals involved. The project focused on
near-term solutions to the problem of improving the security
of existing and future operating systems in an attempt to
have some impact on the security of the systers which would
be in use over the next ten years.I

A general strategy was identified, referred to as
"pattern-directed protection evaluation" and tailored to the
problem of evaluating existing systems. The approach
provided a basis for categorizing protection errors
according to their security-relevant properties; it was
successfully applied for one such ctegory to tne MULTICS
operating system, resulting in the detection of previously
unknown security vulnerabilities.

A

ii
-i
-I

S~~UNC LASS IFIlED

SECURITY CLA$SSIFICATION OF" THIS IrAGIEf(Rhtor DGI4I Entered)

i-i
ISI/$R-78-13 3'

Moy1978

ARPA ORDER NO. 2223

PROTECTION ANALYSIS

Final Report

EA
Richard Bisbey

Dennis Hollingworth j

.
3~

INFORMATION SCIENCES INSTITUTEI.

-- S- d.:,;, . , ,i ,,,a •,' , y/c,,lCa ,-o,,ia) .,291 i
L'NIVEIRS)t; SO('IUHENN CALIIZORNI (21.))8Ž2.-J I1

_ __ __

THIS RESEARCH 15 SUPPORTED BY THE ADVANCED ;IESEARnCH PROJECTS AGENCY UNDER CONTRACT NO DAHCI 72 C 0308. ARPA ORDER

NO. 2222.

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR'S AND) SHOULD NOT BE INTERPRETED AS REPRESENTING THE

OFFICIAL OPINION OR POLICY OF THE UNIVnRSITY OF SOUTHERN CALIFORNIA ON ANY OTHER PERSON OR AGENCY CONNECTED WITH IT

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE. DISTRIBUTION 15 UNLIMITED

PM1ECEDINIG PAGE BLANK-NOT i'I.M~D

l~ii +

CONTIkNrS

Abstract v
1. Project Background and Context 1
2. Project Description 3

Collection of Raw Error Data 6
Development of Raw Error Patterns 6
Development of Generalized Patterns 7
featu~re Extraction 8
Comparison Process I0

3. Redirection of Research 12
-rror Categorization 13
Analysis of Individual Caleguries 1.3

4. Conclusions and Future Resource Drections 16
References 18

Appendix A 19

Appendix B 21

J

I

gI

IMSEDINTyr PAGS BLAI'flNOT -FILMED-

AIBSITR/ICT

un he Protection Analysis project was initiated at ISI by ARPA IPTO to further
understand operating system security vulnerabilities and, where possible, identify

automatable techniques for detecting such vulnerabilities in existing system software. The
primary e.oal of the project was to make protection evaluation both more effective and
more economical by decomposing it into more manageable and methodical subtasks so as to
drastically reduce the requirement for protection expertise and make it as independent as
possible of the skills and motivation of the actual individuals involved. The project focused
on nr ir-term solutions to the problem of improving the security of existing and future
operating systems in an attempt to have some impact on the security of the systems which
would be in use over the next ten years.

A general strategy was identified, referred to as "pattern-directed protection
evaluation" and tailored to the problem of evaluating existing systems. The approach
provided a baýis for categorizin, protection errors according to their security-relevant
properties; it was successfully applied for one such category to the MULTICS operating
system, resulting in the detection of previously unknown security vulnerabilities.

4 45

,.4.

=-

M-

1. PI•OJEC;TBIIA(KGRTOUNI) IINID CO(N't'KU•

When general purpose resource-sharing operating systems became available,
system customers (both governmental agencies and private firms) naturally wished to
exploit fully the economies such systems offered in processing sensitive together with
non.ensitive information, Responding to customers' pressure, the systems'
manufacturers at first claimed that the hardware and software mechanisms supporting
resource sharing, would also (with perhaps minor alterations) provide sufficient
protection and isolation to permit multiprogramming of sensitive anid nonsensitive
programs and data. A skeptical technical community challenged this claim and proved it L
false. Relatively cursory inspection of selecled operating systems by "tiger teams"
(individuals brou-ght together specifically to attempt to penetrate a target operating
system) established that the protection offered fell far short of that required if
multiprogramming of sensitive and nonsensitive proBrams and information were to be
permitted (And-71, Rran73. The. protection mechanisms functioned adequately when
users exercised prescribed system functions, in approximately the prescribed way, but
could not resist the system penetrator who looked for unusual or extraordinary means
to avoid access checking.

I ia king some of today's insight and knowledge, various manufacturers attempted
to retrofit their rxislt, opera!i. systems for securily by sirmp!y correcting the
individual implementation errors and obvious design oversights that contributed to their
system's security deficiencies, Critical analysis of these systems, however, established
that piecemeal efforts to secure an existing general-purpose operating system were
unlikely to succeed (Abb.76, Att476, BoIW74, HloIG74, Mcph74].

Out of this erly floundering came an appreciation that the security problem was -

much more difficult to deal with than expected. l'urthermoro, a number of disturbing
issues surfaced:

1. Th, qCie,.tion of what constituted an appropriate degree of security and how
tiN, is dlermined for a computer system had not been adequately addressed,
Inde.ed, the notion of security was iltelf difficult to formalize in the context of
compute(r r~y,,tems, i.e., it was a reearch issue in its own right. Intuitive
slatemedns such as "the system should not allow an unauthorized user to
ac(ces information he had no right to access" somehow had to be translated
into spv(ific a...rton. about specific operating system objects,

2. No methodology existed for insurinp, that a given system's design was
complete with respect to a particular Security policy which might be chosen,
i.e., that there were not substantial or significant areas where the desired
protection policy could simply be circumvented or ignored.

3. [xisting operating systems were poorly structured when it came to security
- and inlterity, usually having ,rown from early releases to patched,

error-ridden monoliths of interconnected code and tables. V

I
i

n q II I II

PROJECT BACKGROUND 2

4. Efforts to correct known errors were as likely as not to introduce an equal
number of new errors, merely manifested In other ways. This became
painfully evident during the system penetration activities conducted In
conjunction with security retrofit efforts.

5. Program verification techniques would ultimately have to be applied to insure
that operating system code functioned correctly and according to
specification, However, existing techniques could handle only relatively smal2
pieces of code, Irmited data types, and relatively simple data structuras and
dAta accessing schemes--nothing within an order uf magnitude of the size and
complexity of an operating system as thlen structured and implemented.

While these and other issues were troublesome enough with regard to future
systems, they were particularly troublesome in light of the large inventory of systems
In the DoD and private sector. It had been suggested that an existing operating system
would have to be restructured if any substantial improvernen, in the security afforded
was to be effected or if program verification techniques were to be successfully
applied. However, restructuring of an existing system (in many cas*Js tantamount to
redesign of the systtm) meant committing substantial resources and rewriting a
considerable amount of code. It was also apparent that this could be considered only
for a few special sy.stems such as MULTICS and VM/370, which were already
well-structured with the access control mechanisms at the innermost level of control.

It became obvious that additional insight into the design and implementation
deficiencies responsible for operating system security vulnerabilities was necessary. A
much more comprehensive view was required of the number and form taken by such
vulnerabilities. The system penetration work performed in the past did little to provde
any such collective insight, however; the expertise resulting from such studies consisted
of the individual insights of a few individuals rather than communicable Ideas and
knowledge.

=I

STHIS PAGE IS BEST qUALI TY PACTICABL

2. PRIU)I:T I)1:S('RIPTION/INI) A SPJ1 /WIONS

In Septemher el 1973, the Prolection Analysis project was initiated at ISI by
ARPA IPIO to onhance Our undorstanding of operating SyStem vulnorerbilities, expand the
rather sparse knowletl,,e b.,e on this subject, and, if possible, identify autornatable
teCehliique.S for deteclinp. vulnerabitlitie in exiting .%.tem software. Neal-term
solutiOns to the problem of improving the security of oxisting And future systems wore
important it operatinp. system.s security research was to have much Impact on the
evste.ms which would be1 i) uWe over the next ten yoars. It wna hoped that the effort

would yield a more formalized knowledge base on operatin, system security, making it
posible to dcecouple security and oporatinp, sy.tem expertise to some degree, ILe., to
aelow individuals hiivin. limited expertiso in operating system security to effectively
detect system vuln•e abilities,

I he approach adopted was a significant dlparture from the protection evaluation
projects Voinp on vt'i-ewlihee at that im0, suLCh aW, those at Project RISOS and at System
0)'velopment Corporation. These efforts to sylenmain'e penetration activities dealt
ptirnarily with the C`1J'*.ri7ahton of the project staff ilhself rather than the discipline
applic(i [Weisif,]. 1lhy addressed the orenizational ard training aspects of teams of
individuals tasked to analyze operating systems for security vulnerabilitis--individuals
whO thmevs oulld nlake vood "oenvir-nlors" of i ogiven inorget system. who hnod not
only an intimate knowled(Ie of that systoin but al•o a good understandingp of and feel for
protection error po,.shiliie's.

It wai., eVient that Mhe SucCes.s of Such p,1ioups would depend heavily on individual

motivation as well a., skill in finding protectiun error-,--an apparent shortcoming when it
CAme to makinp, dfinitive statelments about the validity of the evaluation effort In which
such an approach was-, adopled The primary poal of the ISI project was to make
protection evalualion both more effective and rmore economical by decomposing it into
more maita.o~vable and molhodical suhbtasks so as to drastically reduce t,-', raquirement
for protrction experlt-e and make it a- irndependent as, possible of the skills and
mot ivatIon of the ac tluil i|dViduals involved.

A general stratepy wa, identified which promised to meet these objectives. It

included the followinp five steps:

1. Collection of "raw" eiior de,.crtiphons.

2. Rvi epre•,entAtion of raw error descriptions in a more formalized notation
(produrucng "raw error pattorts").

3. Eliimination of -,uperfluous fetature, and abstraction of specific system
elmen•tl, into system-independevit elements to develop generalized error
patt I err n,,.

4. "Normalization" of thn tar et sy,.tem by extractinp the information relevant to
the evaluation and represeni:•, it in the form required by a "Comparison"
prot edt ll .

I-

PR~OJE~CT DESCF41PTION 4

!5. Execution of the comparlson procedure.

The specific approach adopted--subsequently referred to as "pattern-directed
protection evaluation" [Car+75]--was tallored to the problem of evaluating existing
systems. It differed from the more general ,pproach principally in that $peclfic
features of interest wore "extracted" from the operating system source code rather
than the entire operating system being rorepresonted In a "normalized" format
(rigure 1), Thus, stops 4 and 5 changed as follows:

4. "Feature extraction"t Instantialion of generalized features and searches for
Instances of those features in the target operating system, and the
description of their relevant contexts.

5. Comparison of combinations of feature instancoc and their contexts with the
foatures and relations expressed in the appropriate error patterns.

A major expectation was that adopting this approach would make it easier to
identify previou.ly undiagnosed errors in given operating systems. As superfluous

Development Production

Collected Operating
Errors System

. er drie Feoturoe
Extract ion

Error

Analysis

Patternsern
PatrsMatching

• • Fi~ore I. Error-driven evaluation process

PROJECT DESCRIPMION 5

features and quahifyinV detail, were eliminated and specific systom fratures replaced by
more peneric or abstract features, a more generalized error representation would
evolve. Thu process could conceivably result in a hierarchy of error petterns, with the
most geoneral and abstractly defined patterns at the upper levels and the most
specialized and concrete ones al the lower levels. Subsequent ins'antiation of the
gonerNlized pitterns by roplacing the more goneral featuros with their more specific
counterparts In parti(ulor classes of oporoting systems or particular functional roas.
might be expoclod to reveal peviously undiscovered operatlng systemh errors
(Figure 2).

Major
error types

Build categories
from error analysis

.generalized patterns

Lattico of error patterns
Error search procedures
New errors Identified

. raw error patterns ...

+,. errors o,, errors ,., errors ...

Figure 2

A second expcctation was that this approach might result In an empirically sound
taxonomy of operating system vulnorabilitios and their causes, which would bn
particulArly useful for .ystem designers and implesrintors. The derivation of raw
patter n•., their generah~athon, and the instanhation of generalized patterns toward other
systems and futn(honal arOaS would all add new elements to the lattice of patterns
formed by the relaton "generalization of" and its convertse, "instance of," with the more
abstract patterns al the top and the more concrete ones at the bottom. As this
structure was, enriched with additional patterns, major substructures might emerge, *t
least below some level of abstractness. If, as was also expected, the search techniques
determined to be aopropriate for the pattoins of each such cubstructure were also
similar, then a reasonable basis would be provided to define major "error types."

1 hc approach was tested with regard to a part.cuhki error type frequently found
in operating systems, and it proved successful at uncovering previously undiagnosed
errors in the MULTICS operating system (Bis475, Ois+76]. The specific details of the
approach ,nd the results and problems which ensued are discussed in the sections
which follow.

I-.

.1,,

PRfO.I'(T DESCRIPTION 6

C0,Oi, I.ON/ Of," Ra/ir Em(R n/wTA

Prior to thi., project, little data on known• protection error vulnerabllitles had
aclunlly boen %stemblod as such in one place. Thus, the first phase of the project
ihvolved developing a tufficiontly rich collection of date on operating system errors
from an many operAltin systems as pocsiblo to provide a good sampling of the types of
crrors which existed.

Ultimately more than 100 errors thai could be employed directly to penetrate
eisting opertingp, systehms wore recorded it dn error data basel numerous minor

varintions on thre, errors were also possible. Those errors came from six systemsi
rtNrX, MULTICS, IXEC 8, GCOS, UNIX, and OS/360.

1he projecl staff it-,elf was familhar in varying degrees with fivu of the six

operating systems. They had boon direcily involved in penetration work on only three
of thrt-o operatinp, systems, however, and thon in projects which examined the systems
at widely differinp levek, of detail. Con."equently, the project had to rely to some
extent upon information it could gather from outside sources, namely other Individuals
involved in oporntinp system penetration studies.

Unfortunslely, it wae. difficult to acquire useful data on errors for systems which
had not bee'n directly reviowud by the stall. Perhaps the major difficulty was the
unavailability of ."y overall irformation about operating system vulnerabilities,
principally because mo".t installations. wore 'eluctant to air waaknosSes that tnight
subsequently be cxpiodited by individuals insido as well as outside thoir organizations.

Another significant difficulty also arose whuse principal inmpact was felt in the
dcvclepment of raw error patterns; it is (lis5cu;ud in the following ;ection.

IDIEIEi.OP M WNO' (" IeAlr ERIROR P AI''7',IENS

Given a raw error d'Incription, the next step was to formulato an appropriate raw
error pattern, a redescription of the error in terms specific to its source operating
system bul in the form of predicates that express "conditions," properties of or
relations among, distinct objocls or features of that system. During this process those
aspects of the initial dievcription superfluous to the actual error itself were eliminated.
1lhe "condition set" of a raw pattern was a minimal set of conditions in the sense that If
any were removed the raw pattern would no longer represent a potential error,

f-owever, from a particuilar raw error de.cription, it was often extremely difficult
to wrile down a pattern that satisfactorily cnptured the essence of the error. rirst, of
cours,,. the error de¢cription had to be thoroughly comprehended, e.g., In terms of how
the error -'tould be exploited by . knowledgeable penetrator This required substantial
familiarity with and sufficient information on the operating system context In which It
occurred. UnfortunAtoly, even where such information was available, the errors were
sometimes described in a rather inonmolote fashion or in a fashion which presumed
substanliAl knowledge about specific low-level details of the system implementation.
This was further complicated by (he lack of a common vocabulary for describing both
functional elements of the system as well a-, the particulars of a given security
deficki.-ncy, requirinp some conjecture on the part of the staff as to the exact
circumstances of the problem.

PROJECT DESCRIPTION 7

Despite these complications, the staff generally was fairly successful in
ascertaining what appeared to be the significant characteristics of the error from the
available documcntation. Even wih that, however, it was not always clear precisely
what policy was being violated and thus what conditions should constitute the pattern.
In some cases, in which equally valid policies could be postulated, the same raw error
appeared to lead to more than one pattern.

lhis process did not appear to be inordinately difficult in the case of the first
pattern processed, "Inconsistency of a Single Data Value over Time." The relevant
characteristics of such errors were readily apparent, as manifested in the various
examples in the error data base. Thus, the textual description of a given instance of
the error type was successfully rereprosented in a raw pattern for which superfluous
details had been eliminated. This is illustrated by the following raw error description
and derived raw error pattern taken from an early version of MULTICS [Bis+75].

Raw Error Description: STOP--PROCESSI-ERROR

SlOP-PROCESS is a supervisor procedure for halting processes. The user can call the
procedure with tihe procoss-id of the process to be stopped. The .user entry to this

procedure checks that the ID is that of the caller, then calls the traffic controller
termination routine. The user can modify the value of the process-id between the time
it is chocked and the time it is passed to the traffic controller.

Raw Error Pattern:

1. Procedure "STOP-PROCESS" is invoked by a user process to halt a specified
proce!qs as indicated by a user-supplied parameter.

2. The "STOP-PROCESS" interface checks that the user-supplied process-id
parameter is valid.

3. The traffic-conlroller termination routine uses the process-id to identify the
appropriate process.

I!. The user process may modify the checked parameter between the times of (2)
and (0).

IflI I3IOP MA F NT O" GNINWRLIZI,) I'A/ITRINS

As an error search criterion, a raw pattern is directly applicable only to operating
systems that share the policy violated by that error and in which the features of that
pattern are known by the same names. Even then, it may apply only to a particular
functional area such as input/output control, and miss similar errors in other areas such
as interprccess communication. To broaden the applicability of a pattern, its expression
must be generalized by substituting more generic names or more abstract features for
more specific ones or by deleting qualifying details without affecting the essence of the
conditions themselves. The same concept, such as the call on a privileged system
procedure by an unprivileged user procedure, may be known by different names (such
as "MME," "JSYS," and "SVC") in different systems. Classes of similar objects, such as
ytes or blocks of physical storage, pages, segments, variables, structured variables,

PROJECT DJESCRIPM ION a

and files (to give an extreme example), can be regarded as instancts of a more abstract
object, in this case the "abstract cell," something that has a name and holds information
(its value). The barnefit of generalizirg is that the generalized pattern applies to a
correspondingly wider class of errors in a wider class of systems.

Generalization of the raw pattern for the inconsistency error examples yielded
the following error pattern and corresponding security policy statem.ent:

Generalized Error Pattern:

B:M(X) and for some operation L occurring before M,
[for operation L which does not modify Value(X),
Value(X) before L NOT - Value(X) before M], and
Valu.(X) after L NOT - Value(X) before M.

Informally stated, process H performs operation M on variable X and the value of X at
the time operation M is performed is not equal to the value of X either before or after
some operation L which occurs before M.

Corresponding Operating System Security Policy Statement-

(93,M,X) -', for some operation L occurring before M, either
[for oporation L which does not modify Value(X),
Value(X) before L - Value(X) before M], or
Value(X) after L - Value(X) before M.

Intuitively stated, process B (whish presumably performs some critical function) can
perform operation M on variable X only if the value of X at the time operation M is
performed is equal to the value of X either before or after some operation L which
occurs before M.

FE/17'1RE X KRIWC?'ION

D[tecting errors in a set of target information implies some kind of comparison
process between the target and the correctness or error criteria. The comparison
need not be directh various transformations may be applied, as practical, to either the
criteria or the targnt to bring them into a suitable form, as long as essential properties
are preserved. In the case of pattern-directed ptotection evaluation, the target is a set
of operating system source programs and specifications; the criteria are the error
patterns; and the comparison process is essentially one of "pattern recognition," In the
sense of an ability to detect instances of errors embedded or camouflaged In a system.

Conceptually, the ideal tool is a general-purpose "protection evaluator," a I
computer program that not only could be applied to a wide class of operating systems
but could also reliably detect a wide class of errors. The inputs to such a program
would be representations of the patterns for the error types covered, together with a
representation of the target operating system. The program would compare the target
representation with the given patterns by searching it for all combinations of features
related in one of the ways specified in some pattern, and would report every su~ch
combination found. In this concept, protection evaluation would seem to consist of two
subtasks: _P

PROJECT DESCRIPTION 9

1. "Normlizing" the target system by extracting the information relevant to the
evaluation and representing it in the form required by a comparison
procedure.

2. Fxecuting the comparison procedure.

Such an ideal is clearly out of reach, however. There exists no model into which
the protection-relevant features of an existing system can be mapped and in which they

can be related for comparison with given patterns, general enough to apply to wide
classes of errors and systems. It is even difficult to determine with precision which
elements of existing systems are relevant to protection and which are not.

Nevertheless, the goal of developing pattern-directed techniques and tools to
systematize and automate protection evaluation might be achieved with a somewhat
altered approach. This becomes evident when one investigates what the two major
requirements for protection evaluation techniques imply about their form, application,
and development.

1hn fir.l reqlirement, that of general-purposeness with respect to operating
systems, carries an obvious implication: there must exist some generalized set of
terminology- a "comparison language"--in which the techniques are specified and in
which the error patterns are expressed. To apply these techniques to a given system,
it is necessary that a correspondence be established between the objects and
terminology of the comparison language, i.e., between the features of the given patterns
and their instantialions in the target system. Either the features of the patterns must
be instantiated to the concepts, objects, and terminology of the target system or the
target system must be represented in terms of the comparison language, or an
intermediate comparison framework must be established and transformations performed
in both directions. If no error possibilities are to be overlooked, then all the instances
of a given pattern feature in the target system must be identified.

If one uses the term "features" to refer to objects that have concrete and
typically localized reprosenlations in the target system description (e.g., variables,
procedure calls, critical parameters), then identifying the relevant features In the target
system is only part of the problem. The other part is to determine whether any of the
relations among these features are those indicated by the conditions of an error
pattern. The requirement that evaluators need not have a talent for recognizing
protection errors and that difficult pattern-recognition processes must not be involved,
makes it essential that the search for an error be decomposed. The search through the
target system code (or some representation of it) for a single dispersed collection of
instances of features in some given relation must be replaced. Instead we must require
only independent searches for individual instances of features in the target system.
ihis implies, of course, that the output of these searches must include simple
specifications of the contexts in which the feature instances were found. The needed
feature context is determined from the relations expressed in the patterns and is used
to determine whether the features found actually satisfy these relations, Thus, the
single integrated search step is replaced by a two-step procedure, the first of which is
more amenable to automation, while the second is probably best performed manually.
While the analysis of the relations among features is not avoided, it is deferred to a
more convenient point in the process where the feature-set to be considered Is greatly
reduced in size.

PROJECT DESCRIPTION iO

In the canre of the inconsistency error, the feature extraction process was applied
to a particular instantiation of the error type involving the consistency of user-supplied
parameters in the MULTICS operating system. To find instances of the error in code, a
pattern was formed using the Error Statement above, which was then instantiated for
identifying inconsistent parameter usage. The Error 3tatement requires the existence
of two operations, both of which refer to a common variable X. The first operation, L,
either fetches the value of the variable or gentrates a new value. The second
ope.ation, M, fetches the value of the variable. Other information contained In the
Error Statement includes the fact that L occurs before M and that M performs some
critical function. These statements give rise to the following pattern elements:

1. An operation L which either fetches or stores into a cell X.

2. An operation M which fetches cell Y,.

3. Operation M is critical.

4. Oporalion L occurs before operation M.

For this particular error, X is instantiated to a parameter, and thus the following
additional pattern element is derived:

5. A procedure B which is interdomain-callable by user procedures and whichaccept! a parameter X.

This pattern ultimately resulted in the following search procedure intended to
recognize, for each parameter, executable sequences of store or fetch operations
followed by a fetch operation:

1. Filter out everything except procedures which are interdomain-callable by
users.

2. Of these, identify those with parameters.

3. For each parameter, identify and output all instructions or statements which
involve store or fetch operations on the parameter.

4. Identify and output all instructions or statements which contain flow of control

operators.

This procedure was subsequently automated and applied to MULTICS with
significant success, resulting in the detection of a number of candidate errors [Bis.761.

COAl P WRISON PRfK ESS

The search output constitutes the input to a separate, methodical comparison
process in which the properties of the feature instances found are exami;sed to
determine whether actual error conditions exist. Obviously, the comparison is still not
direct, since a translation must be made between the generalized relations expressed In

-•the patterns and the descriptions of feature instances provided as input. Again, In

MGM-

PROJECT DESCRIPTION 11

general the choice must be made between expressing the search results in the
comparison language and instantiating the reference properties, The former is required
for a system•- independent comparison algorithm.

In the case of the inconsistency error, that comparison was handled manually.
The fea'ure matches were examined manually to determine if the second operation was
in fact critical. Forty-seven procedures were examined in the- MULTICS- system. Of
these, seven were observed to have one or more errors; five other procedures had
matcnes for which "criticality" of the second fetch could not be determined due to lack
of system documentation.

A9

5
-N1

__, J

121 I
.1. RtIlIRNtCTION OF RKSKARCII

In September 1975 the research direction was significantly modified to conform to -
revised schedule and resource considerations. The major problem with the
pattern-direcled approach (detailed analysis and relating of error characteristic from
the bottom-up) was that the process was hoth time-consuming and extremely tedious; it
consumed a substantial amount of the project's resources while yielding few
demonstrable results. The sponsor questioned whether or not the protection analysis I
process was bounded--i.e., whether the number of error categories was both finite and
small enough to warrant the expenditure of the resources required. The project was
asked to postulate the highest level error categories directly from the existing error
data base--to categorize the entries in the error data base in some appropriate fashion
based upon the analysis performed to date. We were to subsequently work from the I
postulated error categories to develop automatable search strategies rather than
pursue the pattern-directed approach of gradually building up a set of empirically based
categories. II was thought that we might short-circuit some of the more time-consuming
elements of the pattern-directed approach, directly identifying an appropriate set of
error types without having to devote much effort to analyzing individual errors. The
process was expected to be iterative, possibly leading !o a set of nonoverlapping error
categories which could be precisely defined arnd which covered the known protection
vulnerabilities in exi.ting operating systems and ultimately to viable search techniques
for identifying instances of the error categories in target operating systems. Thus, the
earlier approach as characterized by Figure 2 was supplanted by that represented in
Figure 3 below.

Postulated

error categories

Postulate categories Error search patterns
to cover allI errors Refined error categorids

SI ~errors Al. e,,rorsl ... errorsr -0 errors)..
-- _ , --

M- -- &4

Figure 3

Variour difficulties were encountered along the way--unexpected problems which
further altered our approach and perspective as to the most appropriate strategy for
achieving the original goals. They are mentioned below in the discussion of the specific
steps in the revised process.

REDIRECTION OF RESEARCH 13
I

KRROR CATEG'ORIZATION

As a consequence of the error-pattern activities the errors collected in the error
data-base had already been redescribed in a self-consistent fashion. Thus an attempt
was made to directly identify a set of categories which covered the recorded set of
protection errors. These categories were to serve the purpose of grouping like error
types for in-depth study and analysis. The expectation was that the categories vwoula
be refined as the analysis process proceeded until a final set of highly representative,
nonintersecting categories was identified.

Ten categories were identified which seemed to cover all the errors which were
documented and which did not exclude any known error types. Unfortunately, the ten
categories seemed to manifest themselves at differing levels of abstraction; thus, it was
assumed that this would not be the final set of categories, that some would be absorbed
by more abstract categories or possibly be a basis for new categories when additional
analysis had been completed. The categories are briefly described in Appendix A.

1NfIN1¥SIS OF INI)IVII)U/ll., C/;TEOOCIES

After an initial set of categories had been identified, attention was directed
toward analyzing individual categories to gain additional understanding into the
associated operating system security vulnerabilities, allow refinement of the categories,
and accommodate the identification of search techniques for given error types. The
categories which first received attention were those which appeared to be the most
tractable and manilested themselves at the less abstract levels of system object
representation. The error type "Inconsistency of a Single Data Vatue over Time,-
pursued under the pattern-directed work, had been particularly tractable and facilitated
identification and implementation of specific tools for identifying errors of this type in
existing operating systems. The results of our efforts on that error type suggested
that a quite comprehensive semi-automated search could be conducted for such errors
in a given operating system. It was hoped that the same would hold true for other
error types.

Analysis of the second error category led to a somewhat different result, however. In
studying the error category "Va!idation of Operands" it became apparent that the
objects under consideration were much less tangible than those dealt with in the
"Inconsistency..." document. The definition of an operator or operand depended
primarily on the level of abstraction on which the operating system was being
represented, and the necessary validation was generally at a comparable level [Carl76]l

A general strategy was devised for reviewing an operating system for errors of
this type, and the requisite tools were identified. However, the analysis of this error
type brought into sharp focus the requirement for research in the area of program
verification, since the objectives of program verification and the requisite effort In
diagnosing errors of this type were quite similar. With this error type it became
apparent that the formalization and abstractions that were part and parcel of verifying
an operating system were also important in identifying points where validation of
critical conditions had not taken place or had been implemented improperly.
Determination and analysis of the cumulative effect of conditions and results along
relevant control paths as is addressed in the area of program verification is also
required in identifying points where incomplete validation has occurred.

REDIRECTION OF RESEARCH 14

1he third error type analyzed was that of residuals, i.e., information left over In
an object whet the object is deallocated from one process and allocated to another.
Residuals repvesented the first error type which had a particulariy concrete
manifestation in terms of operating system objects (data left undestroyed In a
deallocated cell) as well av being a highly intuilivo error type. However, it wa evident
from the outset that the causes of residual errors might well result from other types of
errors and that this category might eventually be absorbed by one or more categories
handled later on [tlolB76]. A strategy for identifying sources of residual errors
amenable to partial automation was identified but once again it became apparent that
•successful identification of the causes of residual errors in operating systems would
require sophisticated tools involving symbolic program execution and control flow I
analysis as well as possibly application of program verificati.n techniques in order to
determine the paths and condition sets that might result in bypassing of code Intended
to clear data cells on deallocation.

The fourfth and final error type undertaken was that of serialization, Treatmentof this error type launched the project into consideration of the fundamental notions of

program structure, operator synchronization, principles of programming practice, etc.,
and it became quite difficult to identify a viable search strategy. As a side effect, It
became immediately evident that the error type "Interrupted Atomic Operations" was a
special manifestation of this error category and should be treated in the same context.

A major consequence of work on the aforementioned error types was that It
became apparent that the original ten error categories might be reforA.ulated in a more
meaningful way in term- of the following four global error categories:

1. Domain Errors

2. Validation Errors

3. Naming Errors

4. Serialization Frrors

The remainder of the ten error types (with the exception of the operator
selection errors) presented earlier seem either to fall into or split across the four types
shown in Table 1.

Of these four c:ategories, two (serialization and validation) were addressed
explicitly as a result of the woek on the ton originally hypothesized error types; the
other two (naminr and domain errors) were partially covered through the analysis of
one of the remaining error types (allocation/deallocation residual errors). However, the
bulk of the examples associated with the latter two categories have not been addressed
af any greater detail than was required to group them into their respective categories.
Thus, while we believe that the four general categories and their respective
subcategories identified represent a useful and representative grouping of example
errors and a ba.is for more directed analysis, it is possibie that further study and
analysis would result in an even more insiphliul error classification set.

Appendix B summarizes the four documents produced by the project which
address the aforementioned error types.

ZF

REDIRECTION OF RESEARCH 15

TABLE I

Nnmineg Er'orA Vnlidation IErrors

Aceoss Queue
Residual Management /Boundary
Errors Errors

Originally Originally
Csti alog uod Catalogued
Naming Validation
Error-, Errors

Serialirlion Errorx foMuainak Errora

Mtulliple Exposed
Reference Representation
Errors Errort,

Interrupted Attribute
Atomic Residual
Ope'rator ErrorsErrOrs

Composition

Originally Residual
Cat alog,- d Errors
Serialization
Errors Originally "

Catalogued
DomainErrors

tI

-I

I

2I

= I

161

4. (ONCIAJSION$ /1NI) ANDU?'RIK IRKS/IID;ICf DIRPCTIONS

In gencral, the technical community has continually underestimated the difficulty
of the security problem; we feel that the PA effort was no exception, It has proved
surprisingly difficult to diagnose proteclion error vulnerabilltles, much less design
techniques for detecting them. Hoe~vver, while the PA project Is terminating at ISI we
feel that work might be profitably continued in the original area of pattern-directed
protection evaluation despite the inherent difficulties. This approach proved quite

successful for the cge in which it was taken to completion and we feel that It should
prove equally successful in others. Progress occurs at its own rate, however; research
of this type is painfully slow, Much thrashing about and some false starts must be
allowed for if real progress is to be iade in this difficult research area; the desire to
produce useful results quickly can be counterproductive to the total effort. 1

"The PA proj,(t has had its principal impact in extending the knowledge base and
general understanding of operating system protection vulnerabilities, relating apparently
unrelated example errors In terms of those common characteristics which result In a
socurity vlnerability. In iddilion, it h•s, identified some general procedures which will
be valuable in dete(ting future security system vulnerabilities. Finally, the PA project
has,, along with other efforts, made the user community increasingly aware of the
amount of effort and the extensive cost involved in producing a system which has even
a remote chance of providing a reasonable degree of security in an open environment.
Unfortunately, it ha'• also become apparent that the commercial sector is unwilling to
bear this cost at the present time - that there is no apparent commercial market for
systems with the dcv.lIopment costs, reduced performance and usage and environmental
constraints that mu-t. be accepted if secure processing is to iake place. Consequently,
the procedures developed by this project will probably be of little benefit to the
commercial sector and of only marginal benefit to the military sector at this time. They
will find application only when we decide that the value of data security and personal
privacy are greater than the price we must pay for secure data processing.

The analysis of identified error typos was particularly useful in identifying some
appropriate research and development activities in the area of data security,
pkrticularly with tespect to the types of tools required if protection evaluation Is to
become automatable. Tools of the sort described in the "Data Dependency AralyiSei#
document will be needed in much of the evaluation activity, but might be constructed so
as to be generalizable across systems and programming languages.

During the research effort one thing that became evident was the role of program
verification techniques in detecting operating system security vulnerabilities. It is hard
to see how truly definitive statements about the security afforded by an operating2
system can ever be made until PV techniques have been applied. However, certain
unsettled issues about the appropriate application of PV techniques to O.S. security
analysis suggest that research in protection evaluation might be profitably continued in
parallel with research in PV, principally to insure that PV is applied at appropriate
levels of operating system representation, that mapping between levels Is handled
properly, and that the operating system is represented in sufficient detail to Insure that
security vulnerabilities do not go undetected.

CONCLUSIONS 1
FE

rAs C final footnote to this research effort we offer the following comment for
those who are Optinm-stic about near-term Improvement of the data security problem.
Our in.sight into ,nd awareness of security vulnerabilities hm tended to vastly exceed I
our progress in detecting and correcting them. There are still difficult research
probloms to be Attacked In the area of PE in particular and date security research In
general, In the course of addressing these research problems there will undoubtedlybe much floundering and some abortive starts, Progress can be expected to be painful
and stow In final dlspo"ition of the security problem, particulorly since such work seems
to Involve delving into the basic premises of programming theory and practice.

I/

LE

I, I

REFEKRKNUS$

Abb+76 Abbott, R, P. et al., Seoueity Analysis and £nhancementst of C(omputer
Operating Systenms, National Fureau of Standards Institute for Computer
Sciences arid Technology, NBSIR 76-1041, April 1976.

And*71 Anderson, J, P., R. L. Bisbey, D. Hollingworth, arid K. W, Uncepher, Computer
Security Experiment (U)., The Rand Corporation, WN-7275-ARPA, March 1971
(Secret).

At1476 Attana.-lo, C, R., P. W. Markstein, ard R. i Phillips,"Penetratlng an Opereting
Sytom: A Study of VM1370 Integrity,' IBM Systems Journak 15, Jmnulry
1976, pp. 102-116

BelW74 Relady, L. A., and C. Weissman, "Expcriments with Secure Resource Sharing
for Virtual Machines," Proovedings of the International Workshop on Proteootor
in Operoting Systems, August 1974, pp. 27-33.

Bis+7b Bisbey, Richard, II, G. Popek, and J. Carlstedt, Protection Errors int Operating
Systerns. Inconsistency of a Single Data Value Over Time. Information Sciences
Instituto, ISI/SR-7fi-4, Dacenber 1975.

Bis476 Bisbey, Richard, II ot al., Data Dependency Analysis, Information Sciences

Bran73 Uranstad, U,, "Privacy and Protection In Operating Systems," Computer.
January 1973.

Cari7b Carlstedl, J, et al,, Pattern Directed Protection Evaluaeion, Information
Science% Institute, ISI/RR-75-31, June 1975.

Car176 Carlsledt, J., Protection Errors in Operating Systems: Validation of Critical
Contditions. Information Sciences Institute, ISI/SR-76-5 , May 1976.

Car178a Carlstedt, J., Protection Errors in Operating Systems: A Selected Annotated
fiJbhogrfaphy and Index to Ternminology, Information Sciences Institute,
ISI/SR-78 -10, January 1978.

Car178b Carlsted|, J., Protectton Errors &n Operating Systems: Sersializtion, Information
Scion(er.. Institute, ISI/SR-78-9, April 1978,

HolI176 Fiollingworth, D. and R. (3isbey i1, Protection Errort in Operating Sufir•.st

Ailocation/Dcallocation Residuals, Information• Sciences Institute, ISI/SR-76-7,
Juno 1976.

HolG74 ttollingworth, 0. and S. Glasman, WWMCCS/GCOS IIl Security Analysis of
Maetcr Mode Entry Procssung, The Rand Corporation, WN(L)-8749-DCA, July
197',1

Mcph74 McPhee, W. S., "Operating System Integrity in OS/VS2," IBM Systems journ4
13 9',pp. 230-?52.

Weis73 Weissman, C., Systom Secicerity Analysis/Certification Methodology and Resukls,
System Dovelopment Corporation, SP-3728, October 1973.

I

19
i

11PPRNDb'X A

I. Consi.iqoney of doea otior oinne

Opcratinil s•ytteAs Continuously miake protection-related docisions based on data
values contained within the system data base as well as on values which have been A
submitted to and validated by the system,

In order for a correct protection decision to be made (In the absence of other
types of proloction errors), the dnta must be in a consistent state, and remain In a
specitic relationship with other data Items during the Interval in which the protection
decision is made and the corresponding action taken.

2. |/nlidaiinn of opernndit

Within in opm Mting system, numerous Operators are responsible for malintlnimig
the system's data base and for changin, the protection state of processes or objects
known to the system. Many of these operators are critical In the sense that If Invalid
or unconstrained dctta are presented to thoen, a protection error results.

A Cenerally a(cepted error type is that of the "residual," Ie., Informetlon which is
"loft over" in an ohbect when the object is deallocatod from one process and allocated
to another. Several typos of residual errors exist, including the followingt

1. Ac(oss residuals: Incomplete revocation or deallocation -,f the seAss
capabilitio•e to the object or cell.

?. Coinpol.ition residuals. Incomplete doestructio! of the cell's context with other
cell., e: .',biocts. •

3. Data residuals: Incomplete dostru'tion of old valueo -thIn 'lie eeil.

4. No. ingn

Name,; are u-,ed within operating sytterss to dittinguis•h obects from one another.
"1here are many ways in which name binding errors can lead to protection errors. ror
example, oftene the namning scheme does not have enough resolution (Or does not use
that rezolution) to distinguish properly between ramed objects. This resvtz; In those
errors typified by a user creating an ambiguity by naming objecit with the same name
as a previously named (or abnut to be named) object with the iystei, os a result, 2

referencing the wronp ebject.

.'. I)omnin

A domain is an authority specification over ar, object or set of objtcts (usually
thought of in terms of an address space). Enforcement of domains is typicall, limited to
the resolution of the hardware P~rotection mechanism provided by the compu.er. Many

APPM NDIX A 20

of the errors In operating systems are the direct result of one of two types of
domain-related errors:

1. Information associated with the wrong domain,

P. Incorrect enforcement at domain croising,

6. Serinli~tiion

Within iny operiting system, there are resources to which the operating system
mu',t not only control nccess, but Also prevent concurrent use or otherwise enforce
orderly use. This problem, Known as "serialization," is of particular Importance In
multiprogramming systems whore serialization errors often result in protection errors.

7. Interrupte d Alom~it" Opeorntiow

Several piolection errors have appeared In which the enforcement of a
protection policy wA,. bAsod on the assumed uninterruptability of an operation. In each
of the cases, the operation was in fact interruptabl, resulting in a protection error,

Io eo'och u-,or, an operating system presents an abstract machine consisti.ig of the
hardware us'-r in.truction "et plu., the psoeudo-instructions provided through the
supervisor call/invocation mechanism. The pseudo-instructions, in general, allow the
uLOr to mnitnpulite ahstract objects for which representations and operations are not
provided in the basic hardware instruction set. Inadvertent exposure by the system of
the reprosentation of the abstract object, the primrtive instructions which Implement the
ps.eudo-instructions or the data structures Involved in the manipulution of the abstract
object can sometinms result in protected information being made accessible to the user,
thereby resulting in a protoction error,

9. Quleeie UnnDforAmrent Iblf'iEideneieA

Thir, error type broadly includes those errors characterized by improper or
incomplete handlinl, of boundary conditions in manipulating data structures such as
system queues or tables. The consequence is generally a system crash or lockup
resulting in gross denial of service. We distinouish this from legi'imate denial of service
conditions when the' system is merely overloaded, but still functioning according to the
scheduling algorithm design specifications.

10. Crii•irnl Opernnor Sel'4 r'eio" EIrrot'

This error type includes those errors in which the implementer invoked the wrong
function, statement, or instruction resulting in the program performing the wrong
function. In a sense, this is a catch-all category, since every programming error can
ultimately be so cl••.sified.

21

The purpose of this appendix is to provide a context for reading the respective :1
error detection papers.

Inrconsiualeuy of a sigle data value I
A common error in contemporary operating systems is the assumed consistency

of operands between multiple uses. If an operand can be modified between two uses
by a program and the second use relies on an attribute referenced in or set by the first
usage, an error results. Multiple usage of a single operand often occurs during -

validation/use sequences where an operand is first validated and subsequently used in a
computation. Numerous variations exist that make locatiii-. instances of the error
difficult. For example, the operand can be referred to by different names, or the uses
may be contained in textually disjoint routines.

Two patterns for finding inconsistency errors are as follows:
Ia. Find any sequence of REFERENCE ... REFERENCE to a common operand,

or
lb. find any sequence of STORE ... REFERENCE to a common operand,

whenever

2. the operand can be modified between the pair of operators. I

l)etrrion of Iuar,.iisaeurv RrrorA. Outlined below is a set of search strategies for 4
finding consistency errors ba;ed on detecting possible instances of condition la or lb.
Large portions can be automated.

Consider the possible storage classes that operand A can take with respect to the
routine containingp the two references. They are limited to one of the following three:

1. A local
2. A parameter
3. A global

CaEe 1: Local Operand

If the operand is local (in the sense that no other routine can access it), then the
error cannot occur and, thus, no search technique is needed.

Case 2: Parameter Operand

If the operand is a value parameter, then, since it is copied at invocation time Into
a local variable within the routine in question, it can be treated as a local operand as In
Case 1. If the operand is a name or reference parameter, the following search strategy
applies:

I. For each parameter within a routine, find all reference and store instructions
to the parameter.

-i

APPENJIX B 22

2. For the routine, find all control flow operators.

3. For any REFERENCE ... REFERENCE or STORE ... REFERENCE on a control path
(determinet! by the control flow operators found in 2), examine the pair to
determine if the second reference operation relies on an attribute referenced
or stored by the first operator.

4. For any contiol path that allows a single REFERENCE to be executed
iteratively, determine if the second execution of the RLFERENCE relies on an I
attribute referenced by the first execution.

The above procedure finds all possible occurrences of the error for parameter
operands. Steps I and 2 can easily be implemented by computer program.

Case 3: Global Operand

If the operand is a global, then it can be accessed by multiple routines. The
following search strategy applies:

1. For each global, find all reference and store instructions to the global.

2. Find all Ihe control flow operators.

3. For any RFFEREINCE ... REFERENCE or STORE ... REFERENIE on a control path
examine the pair to determine if the second reference operation relies on an
attribute referenced or stored by the first.

4. For any control path that allows a single REFERENCE to be executed
iteratively or recursively, determine if the second execution ol the
RFFFRfNCF relies on an attribute referenced by the first execution.

Note that, with one exception, this is the same search strategy used for
parameters. The difference is that, for globals, multiple execution of P single Instruction
can also result from recursion. Otherwise, the procedure is identical, and in fact the
same code used to detect potential in,•onsistency errors for parameters can also be
used to detect potential inconsistency errors for globals.

The above search strategies find all possible consistency errors. A more detailed
description of Inconsistency Errors can be found in Bis+75.

Validation

Validation of operands is one of the more basic functions performed in operating
systems, it constitutes one of the more basic error types. Validation can take a variety
of forms, from checkine that an integer subscript is within the bounds before allowing
an array access operator to proceed, to checking that a set of properties such as the
time of-day and the caller's access rights hold for an operation to be performed. No
single evaluation approach seems adequate to deal with the wide variety of validation

S. found in contemporary systems and information a protection evaluator may have
available for performing the evaluation task, As such, two approaches for finding
validation errors have been identified. The protection evaluator may choose either or a
combination of both.

APPENDIX B 23

The first requires the protection evaluator to be able to recognize an Invalid
condition for an operand. It begins with the sources of data needing validation, finds
the operators which use such data (i.e., the- which are potentiai candidates for
validation errors), and computes the vilid -n condition holding for a given
operator/operand. A protection evaluator must then judge the adequacy of the validity
condition for the given operator. The second approacn begins with operators and
validation conditions which must hold and determines if the conditions are actually
enforced by the code. It requires the evaluator to be able to identify all critical
operators and specify their associated validation conditions, before proceeding with the
evaluation.

Ous.idc•-ea-Insidc /lApproach. A purpose of validation is to prevent privileged system,
operators from operating on incorrect/unvalidated operands. Externally-supplied user
data constitutes such a source. They enter the system in a variety of ways. Direct or
indirect parameters to supervisor subroutines constitute one large source. Others
include mutually agreed upon mail boxes, communications areas, or files. The operating
system is responsible for insuring that this data is properly checked before a system
operator uses it.

One approach for determining the adequacy of validation is to begin at the
user/system interface and calculate the validity conditions for all user-supplied data at
various operators within the system. This can be done as follows:

1. Identify aHl data entry points into the system. (At all such points, data can
enter the system that needs to be validated.)

2. For each data entry point, calculate data flow paths through the system. All
operating system variables to which the entering data is directly or indirectly
ass..igned must be recorded.

3. Examine all operators referencing a variable identified in (2) above. Verify
that the validity condition enforced on each data path leading to that
operator/operand is sufficient. j

Step 2 can be automated using data dependency analysis or a modified form of
symbolic execution. Steps I and 3 must be done manually. It is important to notc. that
without detailed semantic information describing operations being performed, any
procedure, such as the above, can only tell an evaluator where to look for errors, but
not what to look for.

Inside- e-Ou-(side Aip preach. Suppose a protection evaluator can identify all critical
operators in the system and can specify for each operator the validity condition that
must hold for the successful completion of that operator. The problem of finding
validation errors then amounts to determining the sufficiency of validation code on all
paths leading to that operator. A procedure for checking sufficiency would be as
follows:

I Identify the critical operations within the operating system and the necessary
condition. associated with those operations. Record the condition with the -

associated operand.

2. If an operand is a local or a parameter, follow all possible control paths
leading from the operation to determine the data paths leading to the critical
operation. In passing in a reverse direction through code that enforces

I

APPENDIX B 24

portions of the validation condition, discard the enforced condition,
Eventually, one of the following will occur: ;

a. All conditions are enforced for that control path.

b. All conditions are not enforced upon reaching a user/system interface,"a
i.e, a validation error can be caused by supplying a value outside the
range of the remaining unenforced condition.

C. The control path terminates at a global variable/parameter interface

within the system. Go to 3.

3. If the operantc is a global or formal parameter from 2c, all operators modifying
the global/pirameter must contain as an output condition the validity
condlition v,.ociated with the respective variables. They become critical

operators to be evaluated by this same algorithm.

A more detailed description of validation errors can be found in Carl76.

Residimol

A common security problem is the residual--data or access capability left after
the completion of a process and not intended for use outside the context of that
process. If a reidual becomes accessible to another process, a security error may
re..uIlt. A mnajor Source of such residuals is improper or incomplete
alloc ation/dealloc at ion processing.

Probably the most widely recognized type of residual is the data residual in
which some property of the data associated with a cell is not disposed of upon
reallocation. On; typically thinks of content residuals, i.e., residuals where the cell
content is retained after reallocation. Data residuals can, however, involve other cell
attributes. Such altributes can include cell size, cell location, and the physical
relationship of the cell to other cells. While not representing as high a communications
bandwidth as the content residuals, these latter forms of data residual can also
represent significant security errors.

The following procedure for finding data residuals is based on identifying the cell
allocation/deallocation routine in which residual prevention code should be contained. It
consists of four basic steps:

-A,
1. Identify all cell types found in the system. This can be done by manually

listing various storage inedia and cells on that media and by examining system
data declarations.

2. For each cell, identify its particular freepool, i.e., the buffers for cell
re.source'; b,-ýtween deallocation and allocation.

3. For each freepool, identify allocation/deallocation code by finding all symbolic
references to 'he freepool.

4. For each allocation/deallocation routine, determine if a data residual can
Occur.

APPENDIX B 25

A second major type of residual is the access management residual, sometimes
known as a "danrling reference." Unlike data residuals that deal with the various
attributes of a cell, access management residuals deal with the access paths used to
reference a cell, their creation and destruction.

Access paths are, at some level of representation, simply data stored in special
cells (c.g., bounds registers, PSW's, segment/page tables, capability cells, etc.). Thus,
techniques similar to those described above for finding content residuals will also find
certain typet; A access residuals, i.e., those caused by incomplete deallocation of an
access path created by an allocation routine. Access management residuals differ from
content residuals in an important aspect. There may be multiple access paths to a
given cell, all of which must be deallocated. Furthermore, acce,:.s paths can be created

by other than the formal allocation routines. For example, code that copies an existing
a(cess path producets an access path which muSt also be accounted tor at deallocation.
Similarly, special int.tructions may exist (e.g., the IBM 370 "LOAD-REAL-ADDRESS") that
prodtuce access paths aw a result of invocation, or that can be interrupted causing an
access path to be stored for use when the instruction is reinvoked. "hus, in addition to
the above procedure, one must eximine the system for these letter three sources of
access paths and account for the paths at cell deallocation,

A more detailed description of Residual errors can be found in HolB76.

Se'rinliznaeao.

Serial,7Mtion errors represent one of the broader categories investigated. As
such, the error has nUmoerous manifestations and can be described in a variety of ways
iluCLd~ling orderirn specifications; interoperation communication and insuring the proper
use of communication channels; mutual exclusion for preserving object integrity; and
mutual exclusion for the noninterference of non-atomic operations.

Three distinct approaches for detecting serialization errors are:

1. Analyze the target system macroscopically and informally for the adequacy of
ea(h of a list of serialization provisions. The problem with this approach Is
that no actual algorithm is suggested by the serialization provisions for
(Iccidin. when serialization errors do or do not exist.

2. I)etermine potential concurrencies, and, given these, determine whether any of
them (Itkpn pairwise) represent access conflicts.

3. As.sume all access sequences to sharable objects are c-itical and represent
potentially conflicting concurrencies unless these are made impossible either
by explicit invocations of serialization mechanisms or by other serializing
program logic. The problem with this approach is that it detects a great
many ac(•ss intervals that are not serialized in an obvious manner, and one
must then res.ort to deeper analysis such as that in (2).

Each approach is discussed in greater detail along with suggested ways for
alleviating deficiencies in Carl 78.

